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Abstract—We characterize the robustness and scalabil-
ity of nonlinear Support Vector Machines (SVM) combined
with kernel Principal Component Analysis (kPCA) for
the classification of nonlinearly correlated data within the
context of geo-structure identification using seismic data.
Classification through pattern recognition using supervised
learning algorithms such as SVM is popular in many fields.
However, the suitability of such methods for classifying
seismic data is severely hampered by assumptions of linear-
ity (linear SVM), which affects accuracy, or computational
limitations with increases in data dimension (nonlinear
SVM). We propose an alternate approach to overcome
this limitation, performing nonlinear SVM in a reduced
dimensional space determined using kPCA. We quantify
trade off between accuracy and required computational
time of this approach to classify nonlinearly correlated
seismic data. The utility of the method is demonstrated by
characterizing the geologic structure using synthetically
generated seismograms. We observe that our method pro-
duced a more efficient and robust classifier for seismic data
than standard nonlinear SVM. In most cases considered,
optimal SVM performance occurs when a subspace that
makes up only 10% of the entire feature space is used
for the training set. We also observe a greater than five
times speedup in computational time between the optimal
performance and standard nonlinear SVM. The results
indicate that performing kPCA dimension reduction prior
to SVM classification can significantly increase perfor-

mance, reliability, and robustness of the classifier in seismic
problems.

I. INTRODUCTION

Seismic data is used by geologists for a variety
of applications including earthquake monitoring,
detection and classification of man-made seismic
disturbances, and characterization of structures in
the earth’s subsurface. These applications play a key
role in many defense and energy applications [1],
[2]. For example, a central theme in nuclear non-
proliferation is to locate and characterize seismic
events to distinguish natural events, e.g., earth-
quakes, from anthropogenic ones, e.g., underground
nuclear weapons testing [3], [4], [5]. The recent
claim by North Korea regarding the testing of a
hydrogen bomb is one such instance where seismic
signatures were analyzed to determine the nature
of the event. In the energy sector, identifying the
possibility of induced seismic activity, both minor
and major earthquakes, resulting from the disposal
of waste water used in hydraulic fracturing opera-
tions is a pivotal concern [6], [7]. In applications
such as these, identifying and classifying the source
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and strength of the event accurately is of utmost
importance.

In recent years, seismic imaging techniques have
advanced significantly, leading to higher fidelity
data being recorded. Using thousands of terabytes of
seismogram data to estimate a large number of non-
linearly related parameters in the wave equation [8],
[9] is challenging and often computationally pro-
hibitive [10]. Recent work has shown promise that
computational burden in seismogram inversion can
be alleviated by using Principal Component Anal-
ysis (PCA) [11] for dimensionality reduction [12].
However, assuming linear correlations between pa-
rameters is often not justifiable, particularly for
seismic data that typically exhibits strong nonlinear
correlations. Thus, there is a great need for methods
that will perform classification of seismic data in
a computationally efficient way while preserving
accuracy.

Classification of data through pattern recognition
was first introduced nearly a century ago by Fisher
[13]. Since then it has been used in a wide variety
of disciplines including medical imaging [14], [15],
subsurface hydrology [16], and remote sensing [17].
Within the context of seismic source classification
problems, spectral methods [18], machine learning
algorithms [19] and discriminant methods [20], [21]
have been widely used. More recently, supervised
learning algorithms, such as the Support Vector
Machine (SVM) [22], [23], [24], [25], have found
significant use in two and multi-level classification
problems [26], [17]. In recently published research,
SVMs were used to classify seismic data into earth-
quake and non-earthquake events [27].

Formally, SVMs determine a hyperplane to par-
tition the data into disjoint sets. However, defin-
ing this hyperplane is often impossible in seismic
classification problems because the relation between
acoustic subsurface properties and seismic data is
highly nonlinear. In order to remedy this issue,
we employ kernel Principal Component Analysis
(kPCA) [28], [29], [30], [31]. Similar to nonlinear
SVM, kPCA maps the data to a higher dimensional
feature space where linear PCA [11] is used to
reduce the dimension of the data in feature space.

In this paper, we adopt the combination of non-
linear SVM with kPCA for classifying seismic
data, as has been done recently in other fields like
facial recognition [32] and medical (ECG) data [33].
The article is organized as follows. We begin by

briefly recounting the mathematical formulation of
the techniques, SVM and kPCA in Section II. Next,
we describe the simulations used to generate our
synthetic data, and define performance metrics in
Section III. We present the results in Section IV.
We conclude with a discussion of the key results in
Section V.

II. METHOD

Our goal is to characterize how combining non-
linear SVM with kPCA performs in terms of com-
putational expense, accuracy, and robustness when
compared to nonlinear SVM alone. This combined
method should be useful in the context of seismic
data classification, where large data sets and the
high nonlinear correlations necessitate nonlinear di-
mension reduction techniques. Both linear SVM and
PCA perform poorly on the data in the sample space
due to intrinsic nonlinearities and the results are not
included. We describe the kPCA method briefly here
for the sake of completeness

A. Kernel principal component analysis

Kernel component analysis (kPCA) is a nonlinear
version of principal component analysis (PCA) [11],
which is one of the most widely used dimensional-
ity reduction techniques due to its conceptual and
analytical simplicity and relative ease of implemen-
tation. However, appropriate application of PCA to
a data set requires that the data has an orthogonal
structure that can be used for the decomposition.
Since seismic data is nonlinearly correlated, PCA is
not useful in most cases. kPCA performs PCA based
dimension-reduction on the data after a nonlinear
transformation maps the data into a higher dimen-
sional feature space F , φ(x) : RD → F . The hope
is that through the mapping φ(·) features in the data
are linearized and PCA can identify an orthogonal
basis in feature space.

In practice however, kPCA does not use the
mapping φ(x). Rather a kernel κ(·, ·) that satisfies
Mercer’s condition and is equivalent to κ(xi,xj) =
〈φ(xi), φ(xj)〉 is used to construct a kernel matrix
on which a singular value decomposition can be
performed to identify the principal components of
the data in F . The effective application of kPCA
hinges on selecting an appropriate κ that linearizes
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features in the data when mapped into F . In this
paper we use a Gaussian kernel

κ(x,y) = exp
[
−‖x− y‖2/(2σ2)

]
. (II.1)

which assigns greater weight to samples that are
close to one another; close being defined in terms
of the kernel parameter σ.

B. Dimensionality Reduction for Support Vector
Machines

Support vector machines (SVM) use a maximal
margin classifier to perform binary classification of
a data set. Using training data described by a set
of features, the method identifies boundary limits
for each class in the feature space. These boundary
limits are the local classifiers and the distance
between the local classifiers is called the margin.
SVM attempts to maximize this margin to identify
the classifier as a hyperplane in the middle that
separates the data into two groups while limiting the
number of misclassifications. The data points on the
boundaries support the limits and define the shape
of the maximal margin classifier and are called the
support vectors accordingly. The accuracy of the
method is quantified by the percentage of samples
that are correctly classified. However, in most cases
the data may only be close to linearly separable.
To account for this possibility we introduce slack
variables that allow for misclassification and are
controlled by a regularization factor, here denotes
C.

The standard nonlinear extension of the SVM is
to replace the linear norm with a kernel function.
Note that the kernel function is the same as the
kernel in the kPCA implementation. This leads to
the SVM classification being controlled by

κ(a,yi) + b = 〈φ(a), φ(yi)〉+ b (II.2)

and the nonlinear SVM typically is applied to
the entire transformed data without any dimension
reduction. The disadvantage of this approach is
that all features, equaling the number of sample
points, are used in the classification to determine
the vector φ(a). In kPCA-SVM the dimensionality
of the space F is reduced first using kPCA and then
the optimization problem to define the hyperplane
is solved.

III. CLASSIFICATION OF REFLECTORS

In order to characterize the utility of kPCA-
SVM in seismic classification problems we apply
the methodology to a synthetic data set of seis-
mograms generated using the scalar wave equation
with heterogeneous acoustic profile and perfectly
matched boundary layer. Within each sample there
is either a single reflector or two reflectors and we
seek to partition the data into disjoint sets based on
the number of reflectors. Seismograms are sampled
at known locations and we vary the depths and
magnitudes of the reflectors to increase variably in
the data. The data is preprocessed by band-limiting
the spectral magnitude of the wave form at each
receiver. We perform kPCA-SVM according to the
algorithm described in the previous section using
the kPCA and SVM modules in the Python machine
learning package Scikit-learn [34].

A. Model Setup

Synthetic seismograms are generated using a
scalar wave equation with heterogeneous acoustic
profile,

∂2t u(x, t)− c2(x)∆u(x, t) = ω(t)δ(x− s0) (III.1)

with initial conditions

u(x, 0) = 0, ∂tu(x, 0) = 0 , (III.2)

and first order perfectly matched layers along the
boundaries of the domain. The term s0 in (III.1)
specifies the source position. Equation (III.1) is
solved within the domain D = [0.1, 1] × [0.1, 0.8]
for t ∈ [0, 3.0]. For x = (x1, x2) ∈ D, x1 is the
horizontal coordinate and x2 is the vertical depth
coordinate. Equation (III.1) is discretized using a
second order accurate finite difference scheme and
a first order non-reflecting boundary condition using
the open source PySIT Python package [35].

Ninety equally spaced receivers are placed at
depth x2 = 0.188. We refer to a receiver position
in D by ri, i = 1, 2, . . . , 90. The source position is
fixed at s0 = (0.9, 0.188) and the source profile is
modeled as a Ricker wavelet,

ω(t) = (1− 2π2ν20(t− t0)2)e−π
2ν20 (t−t0)2 (III.3)

where t0 = 6
πν0
√
2
. The source’s peak frequency is

fixed at ν0 = 10 Hz and the form for the offset, t0,
is chosen so that ω(t) = 0 for t < 0.
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The domain contains either one or two reflectors
and is homogeneous otherwise. The depth profile
of the horizontal reflectors is the derivative of a
Gaussian function,

h(x2; a, d) =
a(x2 − d)√

2π
e−

1
2
(x2−d)2 . (III.4)

The scaling parameter a determines the hardness
of the reflector while d determines the reflector’s
depth. We call (a, d) a scaling-depth pair. Scaling-
depth pairs for the horizontal reflector in set R1 are
randomly selected from (a1, d1) ∼ U([1.0, 5.0] ×
[0.36, 0.76]). Scaling-depth pairs for the upper re-
flector in the set R2 are randomly selected from
(a1, d1) ∼ U([1.0, 5.0] × [0.36, 0.52]) and scaling-
depth pairs for the lower reflector in the set R2 are
randomly selected from (a2, d2) ∼ U([1.0, 5.0] ×
[0.6, 0.76]).

Receivers are placed at constant depth above
the reflectors. The source position is fixed and the
profile is modeled as a Ricker wavelet with peak fre-
quency 10Hz. The depth profile of the horizontal re-
flectors is the derivative of a Gaussian function. We
select a constant background acoustic velocity of
c0 = 2.0. At each receiver, the acoustic pressure of
each seismogram is Fourier transformed and band-
limited prior to applying the kPCA-SVM classifier.
This technique removes temporal dependence in the
data and allows us to focus on similarities within the
frequency profiles, which are expected to be a more
telling signature of the number of reflectors in the
system. Preliminary analysis (not included) revealed
that wave interaction through multiple reflections
was greater in the two-reflector seismograms than
the single reflector case. This wave interaction was
characterized by a multi-modal frequency spectrum.
The single reflector system did not display such
attributes. We down-sample the receiver signal and
clip the late arrival time signal because it only
contains very low amplitude reflections. Denoting a
receiver signal at the ith position as ri(t) the down-
sampled and clipped discrete signal can be written
as the vector

ri = (ri(t0), r
i(t1), . . . , r

i(t749))
T , (III.5)

with tj = j∆t, ∆t = 1.25 s
750

. Next, we transform ri

to the frequency domain using a Fourier transform,
bandlimit the frequency from 5–30 Hz using a hard
cutoff, and collect the magnitude of the result.

Figure 1 shows the two seismogram profiles gen-
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Fig. 1. (a) A sample seismogram generated using a single reflector.
(b) A sample seismogram generated using two reflectors. In both (a)
and (b) the record is only shown for t ∈ [0, 1.0] because the signal
decays rapidly for t > 1.0.

erated using the procedure described above. In both
Figure 1 (a) and (b) the record is only shown for
t ∈ [0, 1.0] because the signal decays rapidly for t >
1.0. The source only seismogram is not shown in
the figures in order to highlight the pressure signal
generated from the reflectors. Our goal in applying
kPCA-SVM is to identify whether a seismic signal
is the result of one or multiple buried reflectors
without resorting to seismic imaging methods.

B. Parameter Exploration
The control parameters in these numerical ex-

periments are: the number of dimensions that the
data is projected onto in feature space m (the kPCA
features), the Gaussian kernel parameter σ in (II.1),
and the SVM regularization parameter C. We also
investigate the influence of the number of receivers
on the performance of our trained SVM.
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The results of our parameter space exploration
are presented in Table I. We consider data col-
lected from one, two and three receivers for a
data set composed of one-thousand samples, five
hundred with one reflector and five hundred with
two reflectors. The results of classification show that
there was no significant change in the classification
score (accuracy) with an increased number of re-
ceivers. Since kPCA only relies on the choice of
the kernel, effective application hinges on selecting
a suitable kernel that exposes features in the data
when mapped into the higher dimensional feature
space. We varied the Gaussian kernel parameter as
follows, σ = 0.5, 0.75, 1.0, 2.0 as well as the mar-
gin parameters which relates to the number of points
we allow to be mis-classified, log(C) = 4, 5, 6.
We also very the number or receivers used in the
classification from one to three. In general, the
maximum classification score is insensitive to σ.

TABLE I
KPCA-SVM OPTIMAL PERFORMANCE FOR THE THREE RECEIVER
SCENARIOS. nf (%): NUMBER OF KPCA FEATURES (PERCENT OF

SPECTRUM); σ: KERNEL PARAMETER; C : SVM MARGIN
PARAMETER; CVMAX : MAXIMUM CV SCORE; CPU: CPU TIME

FOR SVM FIT

Receivers nf (%) σ log(C) CVmax

One 100(97.73) 0.5 5 0.933
One 110(99.57) 0.75 6 0.935
One 100(99.8) 1.0 6 0.935
One 150(100.0) 2.0 6 0.932
Two 200(97.96) 0.5 4 0.933
Two 320(99.94) 0.75 4 0.936
Two 240(99.92) 1.0 4 0.94
Two 150(99.96) 2.0 5 0.937

Three 480(99.96) 0.5 4 0.93
Three 210(98.98) 0.75 4 0.931
Three 90(97.52) 1.0 4 0.937
Three 210(99.97) 2.0 5 0.933

Preliminary numerical experiments showed that
the standard deviation of the kernel σ did not have
a significant effect on the accuracy of the SVM
classifier. We select the optimal parameters obtained
in those preliminary studies for our investigation
of classification accuracy and CPU time and focus
on the how classification accuracy and CPU time
depends on the number of dimensions m that the
data is projected onto in feature space and the

regularization parameter C.

IV. KPCA-SVM COMPARISON

The main goals for our application of kPCA-
SVM are to determine how dimensionality reduction
influences the ability of an SVM to properly classify
and distinguish between members of the two sets,
and to quantify any efficiencies gained as a result.
To this end, we systematically vary the number of
kPCA features that are retained prior to classifying
the data and the regularization parameter C and
record both the classification accuracy and CPU
time required. We use data collected at a single
receiver for classification purposes.

Performance of the method is quantified in terms
of (i) the average classification score on a given
set of sample points as the fraction of the set
classified correctly, and (ii) the CPU time required
for optimization convergence. The average score is
a reliable metric for two-level classification algo-
rithms when the training and test sets are made
up of equal samples from each class. Half of the
samples are generated using a single reflector, and
the other half are are generated using two reflectors.
Stratified-shuffle-split cross-validation is used to
form subsets of samples, 15% of the data, with half
from each set. The kPCA-SVM scheme is trained
on the remaining samples and the accuracy score
is evaluated on the test samples. This process is
repeated 100 times for each kPCA-SVM instance
in order to perform cross-validation. This allows
for reliable characterization of each kPCA-SVM
instance’s accuracy and robustness.

Figure 2 plots the contribution of the singular
values to the partial sums normalized by the sum
of the entire spectrum against the singular value
index for a set composed of one thousand samples,
five hundred with one reflector and five hundred
with two reflectors. The graph shows that over 90%
variation in the spectrum of the kernel matrix can
be accounted for by the first ten singular values and
that the first one hundred singular values account for
over 99% of the spectrum. This suggests that kPCA-
SVM should obtain near optimal performance when
one hundred features are used and that no addi-
tional benefits are gained thereafter. We use the
word optimal in terms of the highest value of the
accuracy score averaged over the one hundred cross-
validation instances.
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A. Classification Score
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Fig. 2. The contribution of the singular values to the partial sums
normalized by the sum of the entire spectrum for the first 150 singular
values of the kernel matrix constructed using the thousand samples.
At 100 features, (10% of the total number of features) the singular
values nearly capture the total variation of the sample set in feature
space. The dashed line indicates the optimal number of kPCA features
to maximize the accuracy in the independent test set. The large
amount of the spectrum contained in the first 100 singular values
indicates that using the subspace defined by these singular values
should provide sufficient information for proper classification.
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Fig. 3. Mean SVM cross-validated classification scores for the range
of regularization parameters considered. The scores are computed
over successive kPCA features considered in the SVM. Scores
improve as the number of features considered increases up to one
hundred features and then decreases with a plateau reached after 200
kPCA features.

Our principal study uses a data set composed
of five thousand samples, evenly split between
one and two reflectors. We compute and compare
the SVM cross-validated accuracy scores between
three values for the margin parameter: log(C) =
1, 2, 3, 4, 5, 6, 7 while changing the number of re-
tained kPCA features from ten to five thousand.

When all five thousand features are used, kPCA-
SVM is standard nonlinear SVM. Figure 3 shows
the classification scores for the one hundred cross
validation tests for each of the values of C consid-
ered (increasing in value from left to right) plotted
as a function of number of features retained. Only
values of one to one-thousand are shown as the
values beyond one-thousand are relatively constant.
All value tests reach their optimal performance after
approximately two hundred features are used (≈ 5%
of the total number of features). Lower values of C
result in lower accuracy, while higher values result
in better performance. The values seems to converge
around 95% accuracy and no additional accuracy
is gained by further increasing C. However, the
highest values of C, 106 and 107, are less stable
in their accuracy. This is likely due to the higher
values corresponding to less regularization and thus
more difficult optimization problems.

B. CPU Times

Figure 4 shows the mean CPU time required to
solve the kPCA-SVM classification problem plotted
against the number of features used in classification
for the single receiver case with margin parameter
values of log(C) = 1, 2, 3, 4, 5, 6, 7. In general,
larger values of the margin parameters results in
slower CPU times because the optimization prob-
lem is harder to solve due to less regularization.
Conversely, smaller values of C result in less CPU
time, at the expense of accuracy, cf. Fig. 3. In all
values considered, CPU time increases significantly
with the number of features used. In some cases,
using a lower number of features results in up to
five times speed up when compared to standard
nonlinear SVM.

Figure 5 plots the median accuracy score against
the median CPU time for all values of C consid-
ered when 100 features (circles) and 1000 features
(squares) are used. This plot combines information
from Fig. 3 and Fig. 4. At low values of C the
accuracy is lower, but so is the CPU time. As values
of C increase, so does the accuracy but so does the
CPU time. However, after log(C) = 4 no improve-
ment of accuracy is observed, but the CPU time still
increases. This behavior is observed for both 100 or
1000 features. No significant increase in accuracy
is observed using 1000 features when compared
to 100 features. However there is a considerable
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Fig. 4. CPU time for SVM training vs. number of kPCA features
used. CPU times are shown for the single receiver case.

increase in required CPU time. This difference is
larger for smaller values of C than for larger values.
In general the two parameters, compete with one
another; smaller values of C result in lower CPU
times at the expense of accuracy.
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Fig. 5. Median accuracy score plotted as a function of the median
CPU time for all values of C considered when 100 features (circles)
and 1000 features (squares) are used. At low values of C the accuracy
is lower but so is the CPU time. As values of C increase, so does
the accuracy but so does the CPU time.

V. DISCUSSION

Although nonlinear SVMs have been previously
used in seismic problems [27], we report the first
investigation of how varying the dimension of the
subspace on which a nonlinear SVM is trained
in conjunction with the regularization parameter
influences the classifier’s robustness and computa-
tional speed. Specifically, the method advances the
use of nonlinear SVM in seismic applications by

quantifying the impact of performing dimension-
ality reduction based on kPCA on the robustness
of classification obtained using SVM. We found
that kPCA-SVMs provide a robust classification
algorithm, obtaining the same accuracy as nonlinear
SVM when a small fraction (less than 10%) of the
total number of kPCA features are used with up to
five times speedup.

We also found that both kPCA-SVM and non-
linear SVM classify more than 90% of the data
correctly and the regularization parameter had more
of an effect on accuracy than the number of features
used once an optimal number of features was used.
For large data sets, CPU time increases consider-
ably when more kPCA features are included, but
the SVM classifier score does not improve. This
behavior suggests that for large problems, such as
those encountered in real data, dimension reduc-
tion prior to classification could significantly reduce
computation times without loss of accuracy.

The synthetic seismogram data analyzed in this
study is representative of many real world seis-
mic situations including the monitoring of faults,
detection of underground nuclear weapon testing,
and surveillance of facility usage patterns. In the
field, seismic inversion relies on assuming that the
seismograms given were generated by a particular
model of seismic wave propagation and a particular
subset of acoustic profiles. The presented method of
kPCA-SVM could be applied to determine which
seismic wave propagation model is best suited to
invert a particular seismogram. The development of
these type of classification techniques is needed in
situations where limited seismic observation data is
available and characterizing the source or acoustic
profile model is a key first step in full seismic
inversion. Further developments of the method will
include: incorporating a heterogeneous medium, us-
ing multi-level SVM classification to discover the
number reflectors present, and developing a method-
ology for learning the optimal kernel for feature
extraction.
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